Silicon photonic quantum computing

Syrus Ziai many colleagues & collaborators

Cadence Photonics Summit November 7, 2018

PsiQuantum Corporation

Quantum computing

Worldwide Quantum Activity

IBMQ Google
Microsoft (intel)

Dozens of startups, universities, governments.

Source : Quantum Europe 2016

How to build a QC : qubits

Superconducting

Qubits

Photons Ions

Polarization Encoding

Path Encoding

Motivation for photonic qubit

Low noise

Does not require mK temperatures

No atomic-scale fabrication

CMOS compatible

Inherent quantum I/O

No quantum cross-talk

Manufacturable

Superposition

Classical Function

Classical Function

Classical Function

Quantum Function

Quantum Function

Quantum Function

Quantum interference and 2-qubits gates

Beam Splitter and Classical Photons

Interference between two *indistinguishable* photons only allows for above two possible outcomes

Entanglement

Classical Light

More complex entangled states

Generating 3-photon entangled states from a pair of 2-photon entangled states

Entanglement Circuit

Step 1

Step 2

Step 3b

Generating 3-photon entangled states from a pair of 2-photon entangled states

Memory representation

Quantum State Representation

Requirements for building a QC

Requirements

- 1. A scalable physical system with well characterized qubits
- 2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000...⟩
- 3. Long relevant decoherence times, much longer than the gate operation time
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

1. Qubits 2. Set qubits 5. Read qubits 4. Gates **Persistence**

DiVincenzo, D. P. & Loss, D. Quantum information is physical. Superlatt. Micro. 23, 419–432 (1998) DP DiVincenzo Fortschritte der Physik 48, 120 (2000)

Compelling system requirements

- 1. Integration with classical electronics
- 2. Scalable system*
- 3. Manufacturable
- 4. Supports quantum error correction

Compelling system requirements

- 1. Integration with classical electronics
- 2. Scalable system* to 1,000,000 qubits
- 3. Manufacturable
- 4. Supports quantum error correction

Quantum computation with photons

Knill, Laflamme and Milburn *Nature* **409**, 46 (2001)

Quantum computation with photons

Theoretical solution: Measurement induced non-linearity, with ancillas

Quantum computing possible with:

- Single photon sources
- Single photon detectors
- Linear optical elements (beamsplitter, phaseshifter)

Knill, Laflamme and Milburn *Nature* **409**, 46 (2001)

Linear optical quantum computing architecture

Existing Silicon Photonics Components

- Waveguides
- Delay lines
- Beamsplitters
- Phase shifters
- Switching
- Detectors
- Sources
- Filters

Single Photon Sources and Detectors

Photon generation in Si waveguide

- High χ ⁽³⁾ nonlinearity \sim x100 > SiO₂
- Low Raman noise

Ultra-high confinement of light:

1mW waveguide power gives ~1MW/cm2 power density

Photon generation in Si waveguide

pump

 $t/\Delta\Omega$

non-linearity **Filter** bandwidth

Integration time

 $\phi = 0$

*r*ate

Effective

- Correlated photon pairs
- $\lambda_{\rm p}$ = 1547nm
- 6mm long waveguide
- 100's KHz generation rate
- mW's input power

Enhancing photon generation

- Enhanced efficiency due to resonance effect: $I_{ring} = \frac{V}{1 - \mu c^{ikL}} E_{in}$ $E_{ring} = \frac{it}{1-re}$
- Photon pairs are spectrally shaped
	- Improved brightness
	- Control over JSA
- > x100 improvement in efficiency

Engin, et al Opt. Express **21**, 27826 (2013)

Single photon detection

- Thin film of superconducting material (amorphous and polycrystalline) -- Deposited via standard semiconductor deposition techniques
- Nano-wire widths sub-100nm

Superconducting Nanowire Single Photon Detector (SNSPD)

- > 95% single photon detection
- Timing jitter \sim 10 ps
- Dead time \sim 1 ns (GHz rate operation)
- Dark (noise) <1 Hz
- Single photon sensitivity
- Operating temperature ~4K
- Many Material systems: NbN, WSi, MoSi

Gol'tsman et al, Applied Physics Letters, 79:705 707, 2001

\blacksquare dotootiono Single photon detections

GaAs waveguide superconducting detector

Silicon waveguide superconducting detector

Flip-chip integration

Najafi, et al Nat Comms **6**, 5873 (2015).

Cavity enhanced

53ps jitter 0.1Hz dark counts 7ns reset time

^pu^t ^A Akhlaghiet al, Nat Comms **6**, 8233 (2015).

Quantum Si Photonics Systems

Secured by the laws **2 qubit processor**

- 4 sources + entangling gate
- 16 controllable elements
- Arbitrary 2-qubit preparation and measurement

Santagati et al. (2017). Silicon photonic processor of two-qubit entangling quantum logic. Journal of Optics, 19(11), 114006

High dimensional entanglement generation

- 16 sources, 48 grating couplers, 182 MMIs, 256 crossers
- \approx 600 optical components
- Generation and analysis of 16 dimensional entangled quantum state

Wang et al., Science, 2018

Silicon Photonics State of the industry

Si Photonics Industry

Si Photonics Industry

Quantum photonics Moore's Law

Summary of PSIQuantum

- Mission to build the worlds first useful silicon photonic quantum computer
- Founded by foremost experts in the fields (quantum computing and silicon photonics)
- Assembled world class team, investors, advisors
- Based in Palo Alto, California

"There are a **million** ways to make **one qubit**… …But only **one** way to make a **million qubits**"

