Optics with Metasurfaces: From Spectroscopy to Medical Imaging

Reza Khorasaninejad rzkhorasani@gmail.com

Motivation for Flat Optics

Lenses

Wave-plates and Polarizers

Gratings and Filters

Vertical Integration

Benefits

Straight-Forward Fabrication

One mask level, cost effective

• Vertical Integration Capability

Light weight, compact

• Overcome Limitations of Conventional Optics

Aberrations, multifunctionality

Metasurfaces Concept

Building Block: Waveguiding Effect

Building Block: Polarization Sensitive

Building Block: Dispersion Engineering

Summary

Fabrication Steps of TiO₂ Metasurfaces

Example of Fabricated Metasurfaces

Flat Lenses

• Flat Lenses (Meta-lens)

- Ultra-Thin Lenses, High Numerical Aperture
- Diffraction-Limited Focusing
- Sub-Wavelength Imaging Resolution
- Dispersion Engineering

Design of Flat Lens

 \checkmark Geometric Phase, 2π phase coverage

Flat Lens based on Geometric Phase

• Optical and SEM images of fabricated flat lens

Scale bar: 40 μm

Scale bar: 300 nm

Diffraction Limited Focusing (NA=0.8)

Measured Focal Spots (Diameter= 240 μm, Focal length=90 μm, NA=0.8)

Flat Lens

Sub-Wavelength Resolution Imaging

Scale bar: 10 μ m

Scale bar: 10 µm

Scale bar: 500 nm

Chromatic Dispersion

www.gettyimages.com

Dispersion Engineering

$$\varphi(r,\omega) = -\frac{\omega}{c}(\sqrt{r^2 + F^2} - F)$$

$$F = k \times \omega^n$$

$$\varphi(r,\omega) = \varphi(r,\omega_d) + \frac{\partial \varphi(r,\omega)}{\partial \omega} \bigg|_{\omega=\omega_d} (\omega - \omega_d) + \frac{\partial^2 \varphi(r,\omega)}{\partial \omega^2} \bigg|_{\omega=\omega_d} (\omega - \omega_d)^2 + \dots$$

Dispersion Engineering

Phase Profile of Achromatic Flat Lens

Focusing and Imaging with Achromatic Flat Lens

Tailoring Chromatic Dispersion

NA=0.2, f=63 μm, λ_d=530 nm

Multifunctional Flat Lenses

Multispectral Chiral Imaging

- Multifunctional Metasurface
- Resolving Chirality
- Resolving Spectral Information

Meta-spectrometer

- Multiple Meta-gratings on the Same Flat Substrate
- Ultra-compact, Variable Resolution and Spectral Range
- Simultaneous Polarization Measurement Capabilities

22

Polarization Resolved Imaging

Hafi et al. Nature Methods 11, 579–584 (2014).

Regular imaging

Gruev, et al., Opt. Express 18, (2010).

Polarization-resolved imaging

• Reflection/Transmission

- Degree of Polarization (DOP)
- Atomic/molecular transitions
 - Fluorescence, Luminescence

Mantis Shrimp

Multispectral Chiral Imaging

Design of Multispectral Chiral Lens (MCHL)

SEMs of Fabricated MCHL

Scale bar: 600 nm

Imaging a Facet of Single Mode Fiber: Linear Polarization

Scale bar 0.5 mm

Chiral Response

Chiral Response

Chiral Imaging: Chiral Object

Chiral Imaging: Non-Chiral Object

Engineered Dispersive Response

• Utilizing Chromatic Dispersion

On-axis focusing
Off-axis focusing
Off-axis focusing

Meta-spectrometer

- Diffraction limited focal spots at design wavelength (532 nm)
- Spectral resolutions as high as 0.05 nm (NA=0.1) and spectral range up to ~200 nm (NA=0.02)
- Comparable values to some of the best commercial systems with ~ meter propagation lengths
- Reduced cost and size, with also polarization resolving functionality

	nm	eV	Raman Shift cm ⁻¹
Center Wavelength	500	2.48	
Range Start	487.14	2.55	
Range End	512.86	2.42	
Bandpass	25.71	0.13	
Spectrum Resolution	0.051	0.000248	A laser wavelength is required for Raman Shift calculations Please enter above.
Maximum Wavelength	1431.39	0.87	
Nominal Dispersion	1 nm/mm	-	

Operating Grating Angle: 17.609 degrees

SYSTEMNewton 970 EMCCDShamrock 750mmGratingSUMMARY16µm - 1600 x 200f/9.8 - 68mm grating1200 lines/mm

Nano Letters, 16 (2016). APL Photonics, 2, (2017).

Nano-optic Endoscope Optical Coherence Tomography

Use of Flat Lens

- Free of Spherical Aberration
- Free of Astigmatism
- Enhanced Depth Resolution

Catheter based on Flat Lens

Comparison with the State-of-Art

Resolution Measurements

Nature Photonics, 12, 540 (2018).

OCT using Flat Lens

Nature Photonics, 12, 540 (2018).

All scale bars are 500 μm

Summary

Acknowledgment

Federico Capasso

Wei Ting Chen

Robert Devlin

Alexander Zhu

Zhujun Shi

Hamid Pahlevani

Vyshakh Sanjeev

Jaewon Oh

Charles Carmes

David Rousso

Ishan Mishra

Funding, Collaboration and Fabrication Facility

Summary

