Photonic Integrated Circuits in InP for Sensing Applications

Moritz Baier

Outline

- Integrated Photonics ≠ Silicon Photonics
- Our Open Access PIC Foundry
- Example Building Blocks
- Example PICs
- Q&A

Our Material System of Choice

The Multi-Project Wafer (MPW) Model Sharing The Wafer – Sharing the Cost

Si Electronics

MOSIS pioneered MPWs in 1981

InP Photonics

HHI offers photonic MPWs since 2016

moritz.baier@hhi.fraunhofer.de

One Bandgap for Each Application

- Let's assume we use photons of energy E_{ph}
- Let a device's bandgap be E_g

 E_{g}

One Bandgap for Each Application

We want a solution for the C-band

→E_{ph} = [1530,1570] nm

Low-loss waveguide~1100 nmGain~1550 nmDetector1650 nm	Functionality	Bandgap	
Gain~1550 nmDetector1650 nm	Low-loss waveguide	~1100 nm	Eph
Detector 1650 nm	Gain	~1550 nm	\sim
	Detector	1650 nm	/

Challenges for Integration

- How to implement all of them?
- We chose a combination of:
 - Vertical evanescent coupling
 - Selective regrowth

Functionality	Bandgap
Low-loss waveguide	~1100 nm
Gain	~1550 nm
Detector	1650 nm

Butt-Joint Growth

Process Flow

OW/s	
active core	
n-InP	
Fe-InP substrate	

2) define QW regions & gratings

3) epi-growth p-InP

4) Define active mesas outside of active regions

5) selective-area growth of WG & PD layers

Overall Process Flow

moritz.baier@hhi.fraunhofer.de

Technology Overview and Capabilities

Passive Waveguides

- 1 dB/cm
- 150 µm bend radius
- Can be used for couplers, AWGs, etc.

Polarization Converter

DFB

Compound BB: 4-Section DBR

Quantum Entropy

Randomness Guaranteed by Quantum Mechanics

Phase noise of laser gets imprinted on phase noise of beat signal.

🖗 QUSIDE

C. Abellan et al., "Quantum entropy source on an InP photonic integrated circuit for random number generation" Optica, Sep. 2016.

moritz.baier@hhi.fraunhofer.de

Dual-Polarization Tx

Slim Design – Easy to Make Arrays

112 Gbit/s w/o on-chip laser

- 40 Gbit/s with on-chip laser
- Potential for 200 Gbit/s

M. Baier et al., "New Polarization Multiplexed Externally Modulated

Laser PIC," ECOC 2018

R&D: High Quantum Efficiency Planar Detectors (1064nm, ϕ = 3 mm) For LIGO, Laser Interferometer Gravitational Wave Observatory

Hanford, Washington www.space.com/28409-ligo-generations-the-film-hd-video.html

Livingston, Louisiana

Two neutron stars orbit each other

and collide, merging into one,

the force of which is so great, it creates ripples

which reach Earth and will be detected simultaneously at two observatories.

moritz.baier@hhi.fraunhofer.de

Eagleyard charms Small Satellite MERLIN Low Linewidth Laser PICs for Methane Sensing

eagleyard Photonics GmbH enables SpaceTech GmbH/Immenstaad to build the LIDAR Frequency Reference Unit for German-French small satellite mission MERLIN (<u>Methane Remote Sensing LIDAR</u> <u>Mission</u>) -helping measuring methane gas concentration for a better understanding of climate change.

With a scheduled launch for 2021, the German-French satellite mission is laid out to measure methane gas concentration by means of a LIDAR instrument (Light Detection And Ranging) sending laser light pulses into the atmosphere and determining the gas concentration by the characteristics of the reflected light.

WDM Receiver

Bragg Interrogator for 100 sensors on One Chip

Stokes Vector Rx

Fully Integrated Polarimeter with 45 GHz Bandwidth

All-Optical Memory

Flip-Flops Based on Photons, not Electrons

Sel

G. Mourgias-Alexandris, et al., "Alloptical 10Gb/s ternary-CAM cell for routing look-up table applications," *Opt. Express*, Mar. 2018.

Bragg Sensors Interrogator Optical Sensors for Spark-Free Systems

S. K. Ibrahim et al., "Design of a photonic integrated based optical interrogator" in Photonic Instrumentation Engineering IV, 2017

Bragg Sensors Interrogator Optical Sensors for Spark-Free Systems

A. Kaźmierczak et al., "Integrated interrogator circuits for fiber optic sensor network in generic InP photonic integrated circuit technology," *Optical Sensing and Detection V*, 2018

Optical Driver for CW THz Tx THz Signal Tunable over 570 GHz

Ongoing research: Broadband on-chip THz systems Driven by photonic/hybrid integration

Features:

- Electronic and photonic integration
- Multiple THz bandwidth
- Beam steering via phased arrays

Applications:

- Gas spectroscopy
- Layer thickness measurements
- Quality inspection

Full Ecosystem for PIC Design

- Design Kit: fab building blocks
- **Design Manual**
- Physical simulation
- **Circuit simulation**
- Mask layout generation

1odels		
Туре	Description	
F HHI_1x2_MMI	1x2 MMI Coupler	
HHI_2x2MMI	2x2 MMI Coupler	
🛫 HHI_BJ	Butt-Joint Coupler	_
💒 HHI_DBR	Distributed Bragg Reflect	1000
💒 HHI_DFB	Distributed Feedback Laser	
	E1700 Waveguide	
	E200 Waveguide	
🛨 HHI_E200-E1700	Transition E200-E1700	
🛫 HHI_E200-E600	Transition E200-E600	
HHI_E600	E600 Waveguide	
🛨 HHI_E600-E1700	Transition E600-E1700	
🚍 HHI_EAM	Electro-absorption modu	
HHI_GRAT	Current Injection Tunabl	
📩 HHI_ISO	Active Isolation	
💭 HHI_MZI	Mach-Zahnder Interfero	
HHI_PD_DC	DC Photodetector	
HHI_PD_RF	Fast Photodetector	
HHI_PM_CI	Current Injection Phase	
HHI_PM_TO	Thermo-Optic Phase Mo	
📩 HHI_PoICH	Polarization rotator	
PolSplitter	Polarization Beam Splitter	
📩 HHI_SOA	Semiconductor Optical A	
HHI_SSC	Spot Size Converter for fi	

moritz.baier@hhi.fraunhofer.de

How to Get Started?

From Signature to Tested PIC in Six Months

2)

Prices

<u>MPW runs</u>

4 copies per chip

Tape out every 3 months

dedicated wafer run

quote depends on specifications

Size	Price
2x6 mm ²	2,900 €
4x6 mm²	5,800 €
12x12 mm ²	17,400 €

inquiries:

Dr.-Ing. Moritz Baier

+49 30 31002-690 | moritz.baier@hhi.fraunhofer.de

