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Outline
• Introduction to quantum sensors and atomic clocks

• Chip scale optical clock architecture

• Design of microresonators

• Atom-stabilized Optical local oscillator

• Photonic integration with atomic vapor cells

• References

• arXiv:1811.00616 [physics.optics]. Photonic integration of an optical atomic clock. (2018).

• Hummon, M., et al., Optica 5, 443-449 (2018).
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How are Photonics an enabling technology for 
atomic based quantum sensors?



State-of-the-art Laboratory Standards
• Highly accurate (to SI) , large and complex

Cs fountain clock D f/f < 10-15

Watt balance D (Pm ech/Pelec) < 10-7

Sr optical clock Dl/l < 10-17

JJ voltage standard DV/V< 10-10



Applications and Metrology
• Often driven by desire for interchangeability of parts and advanced, 

efficient manufacturing

Instrum entation

M anufacturing

Navigation

Com m unications



• Measurement standards in chip format

• Embedded, SI-traceable calibration built into instruments
• Goals: flexible, useful, manufacturable, deployable
• Get rid of the middle-man (us!)

NIST on a Chip
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Parallel Fabrication
• To what extent can precision atomic instruments (clocks, magnetometers, 

etc.) be fabricated using low-cost processes similar to integrated circuits?

• Potential impact: an atomic clock on every desktop

HP 5065 (1970) Sym m etricom  X-72 (2005) 2030?



NIST-on-a-chip, Quantum based standards
• https://www.nist.gov/pml/productsservices/nist-chip-portal
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Atoms as quantum sensors

• 2-level system
• Measure energy splitting between two 

levels

• External Perturbation shifts levels
• For atoms, energy spacing is the same, and 

based on fundamental constants (accurate)
• Long coherence times ànarrow linewidths, 

good sensitivity
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Degen, C.L., Reinhard, F., Cappellaro, P., “Quantum  Sensing,” Rev. M od. Phys. 89 , 035002 (2017).
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Atoms as quantum sensors
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Laser
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icrowave
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F ~ GHz

F ~ 100’s THz



Atomic clock overview
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How are (atomic) clocks used in the real world?
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Image credit: Wikipedia

Image  credit:
Nikhil B/Wikimedia Commons

• M any real world devices rely on 1 μsec 
synchronization

• Com m unication networks
• Power grids
• Financial Tim estam ps

• 1 μsec synchronization achieved via GPS 

• GPS signal can be interm ittent, noisy or 
jam m ed

• “Holdover” clock
• OCXO (crystal) can hold 1 μsec for 

~several hrs

• CSAC can hold 1 μsec for >~8 hrs

• Fieldable (operate outside the lab)
• Low  Size, Weight and Power

GPS satellite, Image credit: US Govt. GPS.gov

Chip scale atom ic clock



Chip scale atomic clock
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Im age Credit: N. Phillips/NIST

Ytterbium Optical Lattice Clock; Ludlow group, NIST

• Approaching 18 digits of precision
• Detect changes in height ~1cm
• Precision tests of fundamental physics

• High level of complexity
• Ultrahigh vacuum
• Stable lasers



Atomic clock overview
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Optical clock overview
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Requirements for frequency comb
• Octave spanning

Physical M easurem ent Laboratory

2x

f2x = m frep + 2f0

fm = m frep + f0

f2x - fn= f0



Miniaturization of optical frequency combs
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Ti:Sapph Frequency Com b
OFM Group, NIST

Transportable Fiber Com b
Fiber Sources & Applications Group, NIST

Microresonator based combs

Nanofabrication 
Research 
Group   NIST

Kippenberg Group,
EPFL

1 m m

Vahala Group,
Caltech

1 m eter

5 Watts

100’s Watts

M anurkar, P., et al., OSA Continuum  1 , 274 (2018) [NIST}

Diddam s, S.A ., et al., Science 293 , 825  (2001) [NIST}

< 100 m Watts
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1 mm

Octave Spanning, 1 THz m ode spacingOctave Spanning, 22 GHz m ode spacing

Si3N 4 m icro resonator

Srinivasan [NIST]

Silica (SiO 2) wedge resonator

Vahala [Caltech]



Dispersion engineering for stable pulses
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=

tim e

Norm al GVD

Stable Solitons/pulses

• Anomalous dispersion

• Kerr effect à Intensity dependent 

index of refraction

Kippenberg, T.J., Gaeta, A.L., Lipson, M ., and M .L. Gorodetsky, 
D issipative Kerr solitons in optical m icroresonators, Science 361 , eaan8083, 2018.

For octave spanning frequency comb, 

Tune dispersion over large bandwidth



Dispersion engineering of comb…
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Im age credit: Li, Q . et al., Optica 4 , 193-203 (2017). [NIST]

Radius 23 m icronà 1 THz m ode spacing
Radius determ ines m ode 
spacing (1 THz)

Thickness (~600nm ) 
determ ines  GVD at 
pum p wavelength 
(1550nm )

W idthà controls higher 
order dispersion and 
location of dispersive 
waves.

Pfeiffer, M .H.P, et al., Optica 4 , 684-691 (2017).  [EPFL] 
Okawachi, Y., et al., Opt. Lett., 39 , 3535-3538 (2014). [Cornell]

Yi, X., et al., Optica 2, 1078-1085 (2015). [CalTech] 22 GHz, Q  of 400 m illion
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1 mm

Octave Spanning, 1 THz m ode spacingOctave Spanning, 22 GHz m ode spacing

Si3N 4 m icro resonator

Srinivasan [NIST]

Silica (SiO 2) wedge resonator

Vahala [Caltech]

Popt < 275 mW!



Rubidium two-photon transition
• Intrinsically Doppler-free for counterpropagating light 

fields; all atom s participate  (typical Doppler Broadening 

~ 300M Hz)

• Vapor cell: low  acceleration sensitivity, sim ple to 
im plem ent

• Optical transition: high Q (385 THz/1M Hz = 108), reduced 
system atics, low  phase noise possible (narrow  linew idth,
Δν ≈ 300 kHz)

• Well-studied m etrologically, BIPM  secondary 

representation of the second:

• Possibility of using well established telecom  laser 
technology
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*

* Source: www.hamamatsu.com

Nat. Rb dispenser pill
Douahi, A. et al., Elect. Lett., 2007 

Non-evaporable getter
Hasegawa, M. et al., J. 
Micromech. Microeng., 2007

Antireflective 
(AR) coatings

High-reflectivity (HR) 
coating (AR at 420)

Ptot = 275 m W



Chip-scale optical clock performance

Linew idth contributions Δf (kHz)

Natural linew idth (at 778 nm ) 330

Laser linew idth 475

Tim e of flight 100

Collisional broadening ≈ 125

Total ≈ 1 M Hz

Shift from  [9] Δf (kHz)

Light shift (-1.4 kHz/m W ) -23.4

He coll. shift [10] ≈ 3.5

Bkgnd. gas. coll. shift [10] -4.5

Rb-Rb coll. shift (97 °C) [11] ≈ 1.27

Total ≈ 23.1

*interm odulation lim ited stability: 4x10-12/ !

*

6x10-1 1

1 day

Stability lim ited by DBR laser noise (0.5 M Hz linew idth)



Clock performance with low-noise clock laser

Physical M easurem ent Laboratory

DBR

Sw itch to low  
noise laser



Summary
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• Demonstration of an optical clock using microfabricated components

• Intermodulation limited clock stability at 4.4 x 10-12/ ! to ~1000s using 
275 mW of optical power (25x improvement over CSAC)

• Shot noise limited stability of 6.5 x 10-13/ ! using a low-noise ECDL 
(100x improvement over CSAC, 10x better than Cs beam performance 
out to ~104 s)

• Future directions:
• Development of an integrated clock package  

• Integrated, low noise lasers
• On-chip optical frequency doubling



Future work: Integration
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Clock Laser Setup

GHz Com b setup

THz Com b setup
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How are Photonics an enabling technology for 
atomic based quantum sensors?

Im age credit: Li, Q . et al., Optica 4 , 193-203 (2017). [NIST]

• Precision fabrication
• Tune optical properties for desired applications
• Access optical non-linearity at low  powers

• Parallel wafer level fabrication for atom ic vapors
• Optical tool box

• Spatial m ode, polarization, m odulation
• Precision control &  probing of atom ic quantum  states



Summary

Physical M easurem ent Laboratory

• Demonstration of an optical clock using microfabricated components

• Intermodulation limited clock stability at 4.4 x 10-12/ ! to ~1000s using 
275 mW of optical power (25x improvement over CSAC)

• Shot noise limited stability of 6.5 x 10-13/ ! using a low-noise ECDL 
(100x improvement over CSAC, 10x better than Cs beam performance 
out to ~104 s)

• Future directions:
• Development of an integrated clock package  

• Integrated, low noise lasers
• On-chip optical frequency doubling
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