

Building Photonics with Standard CMOS Platforms

Mark Wade — President and Chief Scientist

Company overview

- Based in Emeryville, CA (right next to Berkeley, CA)
- VC backed company
- ~15 people right now, but we're hiring!

Ayar Labs Background

• Based in Emeryville, CA (right next to Berkeley, CA)

Outline

- Introduction and motivation
- Photonics in SOI CMOS
- Photonics in Bulk CMOS

ASIC bandwidth is growing

Sources: Product spec sheets. Data available upon request.

Slide 5 | 11/7/18

But electrical I/O is at its limit

Sources: Product spec sheets. Data available upon request.

>2020 product roadmaps need a new solution

Sources: Product spec sheets. Data available upon request.

Ayar Labs

Slide 10 | 11/7/18

Ayar Labs

Slide 11 | 11/7/18

Slide 12 | 11/7/18

🔎 Ayar Labs

Slide 13 | 11/7/18

A new era of optics

100G Pluggables

Next-Gen 400G Pluggables

A new era of optics

A new era of optics

• electronic-photonic packages

High volume markets will drive follow-on opportunities

- Optical I/O
 - drives investment in ecosystem:
 - advanced foundry integration, PDKs, packaging, OSATs, ...
- Once the ecosystem is established, follow-on opportunities can be addressed
 - sensing
 - imaging
 - free-space communications
 - quantum computing

Photonic processor to memory interconnect

Ayar Labs

Slide 18 | 11/7/18

Photonic processor to memory interconnect

Outline

- Introduction and motivation
- Photonics in SOI CMOS
- Photonics in Bulk CMOS

"Zero-Change" approach to integration: 45RFSOI

• 300mm wafer, commercial process

"Zero-Change" approach to integration: 45RFSOI

- 300mm wafer, commercial process
- Qualified, high-volume production since 2008

Slide 22 | 11/7/18

"Zero-Change" approach to integration: 45RFSOI

- 300mm wafer, commercial process
- Qualified, high-volume production since 2008
- Advanced process used in microprocessors
 - N-FET transistor $f_T = 485$ GHz [Lee, IEDM 2007]
- Photonic enhancement enables VLSI photonic systems

Air

[Orcutt Opt. Ex. 2012]

• Transistor performance comparable or exceeding leading-edge nodes

 Transistor performance comparable or exceeding leading-edge nodes
 You can hit end-game 100Gbps data rates!!

- Transistor performance comparable or exceeding leading-edge nodes
- 193nm immersion lithography

- Transistor performance comparable or exceeding leading-edge nodes
- 193nm immersion lithography
- Most advanced node before any double patterning needed or EUV

- Transistor performance comparable or exceeding leading-edge nodes
- 193nm immersion lithography
- Most advanced node before any double patterning needed or EUV
 - One of the last SOI nodes that support an optical mode natively in its c-Si transistor layer

- Transistor performance comparable or exceeding leading-edge nodes
- 193nm immersion lithography
- Most advanced node before any double patterning needed or EUV
 - One of the last SOI nodes that support an optical mode natively in its c-Si transistor layer
- SiGe present for transistor strain engineering

- Transistor performance comparable or exceeding leading-edge nodes
- 193nm immersion lithography
- Most advanced node before any double patterning needed or EUV
 - One of the last SOI nodes that support an optical mode natively in its c-Si transistor layer
- SiGe present for transistor strain engineering
- An SOI CMOS node, qualified billion transistor designs

Single-chip microprocessor with photonic I/O

[Sun et al Nature 2015]

- Single chip with both electronics and optics
- 70M transistors alongside ~1,000 optical devices
- First microprocessor chip to communicate using light

Single-chip microprocessor with photonic I/O

Single mode fiber
Commands + Write data
Read data from memory

CPU mode

"DRAM" mode

- Dual-core RISC-V processors
- 1MB on-chip SRAM
- Two modes:
 - CPU mode
 - emulated DRAM mode
- Runs arbitrary compiled code
 - Linux
 - Graphics rendering
 - Performance benchmark tools

[Sun et al Nature 2015]

WaveLight: Low-latency switching fabric

[Sun et al. HOTI 2017]

WaveLight: Low-latency switching fabric

Monolithically integrated PICs for multi-Tbps I/O

- Includes all electronics and photonics for optical I/O (except laser)
- Transmitter: 2.0 Tbps (5 x 400Gbps)
 - 16 x 25Gbps
 - Digital backend
 - SerDes
 - High-speed clocking, distribution
 - Closed-loop thermal control
 - Built-in self test (BERT, debug, etc.)
- Receiver: 1.2 Tbps (3 x 400Gbps)
 - 16 x 25Gbps
 - Digital backend
 - SerDes
 - PD, TIA, equalization, CDR, clocking

0.950mm

• 400G Tx

- ~1 Tbps/mm²
- 0.83 pJ/bit

channel 10

channel 11

channel 12

0.400mm

channel 15

Slide 37 | 11/7/18

Design flow

photonics

electronics

Design flow

Design flow

Ayar Labs

Slide 42 | 11/7/18

Co-design simulation environment

- Device simulations for compact model parameter extraction
 - Lumerical FDTD, Mode, Device
 - COMSOL
- Verilog-A device compact models to integrate into electronic-photonic circuit simulations
 - Fully-dynamic models, not just base-band models
- Simulation done using established circuit simulation tools
 - Spectre/HSPICE
 - Run in the same simulation as with 45nm transistors

56Gbps PAM4

Parasitic extraction

- Connections between circuits and photonic devices using existing PDK metal layers
- Parasitic extraction deck will extract full signal path between circuits and optics
- Short wire lengths, parasitics are on the order of 1-2fF
- Extracted netlist plugs directly into simulation framework

Outline

- Introduction and motivation
- Photonics in SOI CMOS
- Photonics in Bulk CMOS

Photonic processor to memory interconnect

Slide 46 | 11/7/18

DRAM processes heavily optimized for cost

Periphery

8 mm

Micron wafers

mm ∞

20 mm

First-ever link result with bulk CMOS photonics Micron D1L Reticle

[Meade et al. VLSI Tech Symp 14, Sun et al VLSI Ckts Symp 14]

- All slices BER checked at 5Gb/s
- 45Gb/s aggregate rate per waveguide

- All receive slices functional and BER checked at 5Gb/s
- Single fiber more I/O BW than x16 DDR4 part

From 200mm to 300mm bulk CMOS

First 65nm bulk CMOS wafers with working photonics and transistors!

Process Integration

- Deposited on deep-trench oxide
- Patterned after transistor formation

[Atabaki et al. Nature 2018]

Slide 52 | 11/7/18

Device Library

[Atabaki et al. Nature 2018]

Microring modulators

[Atabaki et al. Nature 2018]

Microring detectors

[Atabaki et al. Nature 2018]

Slide 55 | 11/7/18

5V (11 GHz)

 10^1

OV (8 GHz)

10⁰

Frequency (GHz)

5V

10⁻¹

↔ 50 ps/div

12.5 Gb/s

Link operation

10Gbps Tx and Rx Macro Operation

[Atabaki et al. Nature 2018]

Conclusions

- Photonics has entered standard CMOS processes
- An emerging ecosystem will drive new applications

Slide 57 | 11/7/18

Slide 58 | 11/7/18

Confidential & Proprietary | Copyright Ayar Labs, Inc.

Building optics in bulk CMOS

200mm CMOS 200nm Bulk Process

300mm CMOS 65nm Bulk Process

Slide 59 | 11/7/18

Confidential & Proprietary | Copyright Ayar Labs, Inc.

Published this week in Nature: 65nm Bulk CMOS Integration

Integration of thin-film photonics with silicon nanoelectronics for next generation systems-on-a-chip

Amir H. Atabaki^{1*†}, Sajjad Moazeni^{2†}, Fabio Pavanello^{3†¶}, Hayk Gevorgyan⁴, Jelena Notaros^{3††}, Luca Alloatti¹, Mark T. Wade^{3**}, Chen Sun^{2**}, Seth A. Kruger⁵, Huaiyu Meng¹, Kenaish Al Qubaisi⁴, Imbert Wang⁴, Bohan Zhang⁴, Anatol Khilo⁴, Christopher V. Baiocco⁵, Miloš A. Popović⁴, Vladimir M. Stojanović² & Rajeev J. Ram¹,

-301

Slide 60 | 11/7/18

Confidential & Proprietary | Copyright Ayar Labs, Inc.