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Emeryville,	CA

• Based in Emeryville, CA (right next to Berkeley, CA)
• VC backed company
• ~15 people right now, but we’re hiring!
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2015

Ayar Labs Background
• Based in Emeryville, CA (right next to Berkeley, CA)
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• Introduction and motivation
• Photonics in SOI CMOS
• Photonics in Bulk CMOS
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Sources: Product spec sheets. Data available upon request.

ASIC 
bandwidth 
is growing
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Sources: Product spec sheets. Data available upon request.

But electrical 
I/O is at its 
limit

I/O	Bottleneck
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Sources: Product spec sheets. Data available upon request.

>2020 
product 
roadmaps 
need a new 
solution

I/O	Bottleneck
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100G	Pluggables

Next-Gen	400G	Pluggables
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100G	Pluggables

Next-Gen	400G	Pluggables

Package

SOC
Optical chiplet
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• electronic-photonic packages
• requires an ecosystem:
• foundries
• package/assembly 

technologies
• connector vendors
• OSATs

Package

SOC
Optical chiplet
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• Optical I/O
• drives investment in ecosystem: 
• advanced foundry integration, PDKs, packaging, OSATs, ... 

• Once the ecosystem is established, follow-on opportunities can 
be addressed
• sensing
• imaging
• free-space communications
• quantum computing
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[ISCA 2010]

High Performance 45nm SOI 0.18µm Bulk

70M transistors
1000 optical devices

DARPA POEM
2M transistors

1000s optical devices

6m
m

5m
m

Photonic processor to memory interconnect
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• Introduction and motivation
• Photonics in SOI CMOS
• Photonics in Bulk CMOS
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“Zero-Change” approach to integration: 45RFSOI
• 300mm	wafer,	commercial	process
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“Zero-Change” approach to integration: 45RFSOI
• 300mm	wafer,	commercial	process
• Qualified,	high-volume	production	since	2008
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“Zero-Change” approach to integration: 45RFSOI

IBM	Cell IBM	Power7

• 300mm	wafer,	commercial	process
• Qualified,	high-volume	production	since	2008
• Advanced	process	used	in	microprocessors

• N-FET	transistor	fT =	485	GHz	[Lee,	IEDM	2007]
• Photonic	enhancement	enables	VLSI	photonic	systems

IBM	Espresso
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Transistor
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Oxide/Nitride

[Orcutt Opt.	Ex.	2012]
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2. Survey of existing SOI platforms

In this section, we summarize the performance of the state-of-the-art silicon photonic process
technology platforms and discuss the advantages of monolithic integration in advanced high-
performance CMOS processes for meeting the needs of future optical interconnects.

High-performance integrated systems demand advanced CMOS technologies with high fT
(frequency at which transistor current gain is unity) and fmax (frequency at which transistor
power gain is unity). These are the performance metrics of transistors representing analog
circuit’s speed and sensitivity, and logic speed. Fig. 1 shows the trend of fT for NMOS devices in
IBM/GlobalFoundries technology nodes, which is representative of the performance in other
similar foundries and process nodes. Notice that fT has peaked in 45 nm and 32 nm CMOS nodes,
due to the focus of more scaled-down nodes on logic energy and area density optimization for
memory and logic chips, rather than the speed of analog and mixed-signal circuits. Since photonic
interconnects are primarily based on mixed-signal transceiver circuitry, these transistor metrics
directly impact the link performance metrics such as speed, sensitivity and energy e�ciency. For
photonic interconnects to be attractive alternative to electrical short-to-long-range (chip-to-chip
to backplane) I/O of large SoC chips, they have to provide a sub-1 pJ/b 25-50 Gb/s links with
low-energy electrical connection to the SoC and aggregate throughputs larger than 10 Tb/s.

Fig. 1. The comparison of fT for IBM/GlobalFoundries CMOS processes.

From this perspective, non-monolithic platforms are expected to achieve high energy e�ciencies
and receiver sensitives for high-speed optical transceivers due to the flexibility to choose the best
performing electronics process independent of the photonics process. Performance summary of the
latest non-monolithic silicon photonic technologies are shown in Table. 1. Despite the advantage
of optimizing the electronics and photonics separately, these platforms are still consuming
>1 pJ/b modulator driver energies with >50 µA receiver sensitivity, which clearly does not satisfy
the electrical and optical power budget of future optical interconnects. The main reason are the
additional parasitic inductance and capacitance of wire-bonds or micro-bumps (like Cu-pillars)
interconnecting electronic and photonic chips. This extra capacitance ranging from 20 fF to 100 fF
degrades transmitter’s energy e�ciency and also imposes stringent gain-bandwidth constraint for
the receiver design leading to degraded receiver sensitivity.

Aside from the packaging of photonics with mixed-signal transceiver circuits, the final
packaging with the SoC chip (e.g., CPU, FPGA or switch) is important for the overall photonic
interconnect performance since it determines the quality of the electrical link between the SoC
and the photonic transceiver. Current non-monolithic platforms require wire-bonds to connect
the photonic transceivers to the package, which degrades the electrical link channel between

• Transistor	performance	comparable	or	
exceeding	leading-edge	nodes

• 193nm	immersion	lithography
• Most	advanced	node	before	any	
double	patterning	needed	or	EUV

• One	of	the	last	SOI	nodes	that	support	
an	optical	mode	natively	in	its	c-Si	
transistor	layer

• SiGe present	for	transistor	strain	
engineering

• An	CMOS	SOI	node,	qualified	billion	
transistor	designs

Why is 45nm SOI special? 

[Stojanovic, Opt. Ex 2018]
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2. Survey of existing SOI platforms

In this section, we summarize the performance of the state-of-the-art silicon photonic process
technology platforms and discuss the advantages of monolithic integration in advanced high-
performance CMOS processes for meeting the needs of future optical interconnects.

High-performance integrated systems demand advanced CMOS technologies with high fT
(frequency at which transistor current gain is unity) and fmax (frequency at which transistor
power gain is unity). These are the performance metrics of transistors representing analog
circuit’s speed and sensitivity, and logic speed. Fig. 1 shows the trend of fT for NMOS devices in
IBM/GlobalFoundries technology nodes, which is representative of the performance in other
similar foundries and process nodes. Notice that fT has peaked in 45 nm and 32 nm CMOS nodes,
due to the focus of more scaled-down nodes on logic energy and area density optimization for
memory and logic chips, rather than the speed of analog and mixed-signal circuits. Since photonic
interconnects are primarily based on mixed-signal transceiver circuitry, these transistor metrics
directly impact the link performance metrics such as speed, sensitivity and energy e�ciency. For
photonic interconnects to be attractive alternative to electrical short-to-long-range (chip-to-chip
to backplane) I/O of large SoC chips, they have to provide a sub-1 pJ/b 25-50 Gb/s links with
low-energy electrical connection to the SoC and aggregate throughputs larger than 10 Tb/s.

Fig. 1. The comparison of fT for IBM/GlobalFoundries CMOS processes.

From this perspective, non-monolithic platforms are expected to achieve high energy e�ciencies
and receiver sensitives for high-speed optical transceivers due to the flexibility to choose the best
performing electronics process independent of the photonics process. Performance summary of the
latest non-monolithic silicon photonic technologies are shown in Table. 1. Despite the advantage
of optimizing the electronics and photonics separately, these platforms are still consuming
>1 pJ/b modulator driver energies with >50 µA receiver sensitivity, which clearly does not satisfy
the electrical and optical power budget of future optical interconnects. The main reason are the
additional parasitic inductance and capacitance of wire-bonds or micro-bumps (like Cu-pillars)
interconnecting electronic and photonic chips. This extra capacitance ranging from 20 fF to 100 fF
degrades transmitter’s energy e�ciency and also imposes stringent gain-bandwidth constraint for
the receiver design leading to degraded receiver sensitivity.

Aside from the packaging of photonics with mixed-signal transceiver circuits, the final
packaging with the SoC chip (e.g., CPU, FPGA or switch) is important for the overall photonic
interconnect performance since it determines the quality of the electrical link between the SoC
and the photonic transceiver. Current non-monolithic platforms require wire-bonds to connect
the photonic transceivers to the package, which degrades the electrical link channel between

Why is 45nm SOI special? 

[Stojanovic, Opt. Ex 2018]

• Transistor	performance	comparable	or	
exceeding	leading-edge	nodes

• 193nm	immersion	lithography
• Most	advanced	node	before	any	
double	patterning	needed	or	EUV

• One	of	the	last	SOI	nodes	that	support	
an	optical	mode	natively	in	its	c-Si	
transistor	layer

• SiGe present	for	transistor	strain	
engineering

• An	CMOS	SOI	node,	qualified	billion	
transistor	designs

You	can	hit	end-game	100Gbps	
data	rates!!
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2. Survey of existing SOI platforms

In this section, we summarize the performance of the state-of-the-art silicon photonic process
technology platforms and discuss the advantages of monolithic integration in advanced high-
performance CMOS processes for meeting the needs of future optical interconnects.

High-performance integrated systems demand advanced CMOS technologies with high fT
(frequency at which transistor current gain is unity) and fmax (frequency at which transistor
power gain is unity). These are the performance metrics of transistors representing analog
circuit’s speed and sensitivity, and logic speed. Fig. 1 shows the trend of fT for NMOS devices in
IBM/GlobalFoundries technology nodes, which is representative of the performance in other
similar foundries and process nodes. Notice that fT has peaked in 45 nm and 32 nm CMOS nodes,
due to the focus of more scaled-down nodes on logic energy and area density optimization for
memory and logic chips, rather than the speed of analog and mixed-signal circuits. Since photonic
interconnects are primarily based on mixed-signal transceiver circuitry, these transistor metrics
directly impact the link performance metrics such as speed, sensitivity and energy e�ciency. For
photonic interconnects to be attractive alternative to electrical short-to-long-range (chip-to-chip
to backplane) I/O of large SoC chips, they have to provide a sub-1 pJ/b 25-50 Gb/s links with
low-energy electrical connection to the SoC and aggregate throughputs larger than 10 Tb/s.

Fig. 1. The comparison of fT for IBM/GlobalFoundries CMOS processes.

From this perspective, non-monolithic platforms are expected to achieve high energy e�ciencies
and receiver sensitives for high-speed optical transceivers due to the flexibility to choose the best
performing electronics process independent of the photonics process. Performance summary of the
latest non-monolithic silicon photonic technologies are shown in Table. 1. Despite the advantage
of optimizing the electronics and photonics separately, these platforms are still consuming
>1 pJ/b modulator driver energies with >50 µA receiver sensitivity, which clearly does not satisfy
the electrical and optical power budget of future optical interconnects. The main reason are the
additional parasitic inductance and capacitance of wire-bonds or micro-bumps (like Cu-pillars)
interconnecting electronic and photonic chips. This extra capacitance ranging from 20 fF to 100 fF
degrades transmitter’s energy e�ciency and also imposes stringent gain-bandwidth constraint for
the receiver design leading to degraded receiver sensitivity.

Aside from the packaging of photonics with mixed-signal transceiver circuits, the final
packaging with the SoC chip (e.g., CPU, FPGA or switch) is important for the overall photonic
interconnect performance since it determines the quality of the electrical link between the SoC
and the photonic transceiver. Current non-monolithic platforms require wire-bonds to connect
the photonic transceivers to the package, which degrades the electrical link channel between

Why is 45nm SOI special? 

[Stojanovic, Opt. Ex 2018]
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2. Survey of existing SOI platforms

In this section, we summarize the performance of the state-of-the-art silicon photonic process
technology platforms and discuss the advantages of monolithic integration in advanced high-
performance CMOS processes for meeting the needs of future optical interconnects.

High-performance integrated systems demand advanced CMOS technologies with high fT
(frequency at which transistor current gain is unity) and fmax (frequency at which transistor
power gain is unity). These are the performance metrics of transistors representing analog
circuit’s speed and sensitivity, and logic speed. Fig. 1 shows the trend of fT for NMOS devices in
IBM/GlobalFoundries technology nodes, which is representative of the performance in other
similar foundries and process nodes. Notice that fT has peaked in 45 nm and 32 nm CMOS nodes,
due to the focus of more scaled-down nodes on logic energy and area density optimization for
memory and logic chips, rather than the speed of analog and mixed-signal circuits. Since photonic
interconnects are primarily based on mixed-signal transceiver circuitry, these transistor metrics
directly impact the link performance metrics such as speed, sensitivity and energy e�ciency. For
photonic interconnects to be attractive alternative to electrical short-to-long-range (chip-to-chip
to backplane) I/O of large SoC chips, they have to provide a sub-1 pJ/b 25-50 Gb/s links with
low-energy electrical connection to the SoC and aggregate throughputs larger than 10 Tb/s.

Fig. 1. The comparison of fT for IBM/GlobalFoundries CMOS processes.

From this perspective, non-monolithic platforms are expected to achieve high energy e�ciencies
and receiver sensitives for high-speed optical transceivers due to the flexibility to choose the best
performing electronics process independent of the photonics process. Performance summary of the
latest non-monolithic silicon photonic technologies are shown in Table. 1. Despite the advantage
of optimizing the electronics and photonics separately, these platforms are still consuming
>1 pJ/b modulator driver energies with >50 µA receiver sensitivity, which clearly does not satisfy
the electrical and optical power budget of future optical interconnects. The main reason are the
additional parasitic inductance and capacitance of wire-bonds or micro-bumps (like Cu-pillars)
interconnecting electronic and photonic chips. This extra capacitance ranging from 20 fF to 100 fF
degrades transmitter’s energy e�ciency and also imposes stringent gain-bandwidth constraint for
the receiver design leading to degraded receiver sensitivity.

Aside from the packaging of photonics with mixed-signal transceiver circuits, the final
packaging with the SoC chip (e.g., CPU, FPGA or switch) is important for the overall photonic
interconnect performance since it determines the quality of the electrical link between the SoC
and the photonic transceiver. Current non-monolithic platforms require wire-bonds to connect
the photonic transceivers to the package, which degrades the electrical link channel between

Why is 45nm SOI special? 

[Stojanovic, Opt. Ex 2018]
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2. Survey of existing SOI platforms

In this section, we summarize the performance of the state-of-the-art silicon photonic process
technology platforms and discuss the advantages of monolithic integration in advanced high-
performance CMOS processes for meeting the needs of future optical interconnects.

High-performance integrated systems demand advanced CMOS technologies with high fT
(frequency at which transistor current gain is unity) and fmax (frequency at which transistor
power gain is unity). These are the performance metrics of transistors representing analog
circuit’s speed and sensitivity, and logic speed. Fig. 1 shows the trend of fT for NMOS devices in
IBM/GlobalFoundries technology nodes, which is representative of the performance in other
similar foundries and process nodes. Notice that fT has peaked in 45 nm and 32 nm CMOS nodes,
due to the focus of more scaled-down nodes on logic energy and area density optimization for
memory and logic chips, rather than the speed of analog and mixed-signal circuits. Since photonic
interconnects are primarily based on mixed-signal transceiver circuitry, these transistor metrics
directly impact the link performance metrics such as speed, sensitivity and energy e�ciency. For
photonic interconnects to be attractive alternative to electrical short-to-long-range (chip-to-chip
to backplane) I/O of large SoC chips, they have to provide a sub-1 pJ/b 25-50 Gb/s links with
low-energy electrical connection to the SoC and aggregate throughputs larger than 10 Tb/s.

Fig. 1. The comparison of fT for IBM/GlobalFoundries CMOS processes.

From this perspective, non-monolithic platforms are expected to achieve high energy e�ciencies
and receiver sensitives for high-speed optical transceivers due to the flexibility to choose the best
performing electronics process independent of the photonics process. Performance summary of the
latest non-monolithic silicon photonic technologies are shown in Table. 1. Despite the advantage
of optimizing the electronics and photonics separately, these platforms are still consuming
>1 pJ/b modulator driver energies with >50 µA receiver sensitivity, which clearly does not satisfy
the electrical and optical power budget of future optical interconnects. The main reason are the
additional parasitic inductance and capacitance of wire-bonds or micro-bumps (like Cu-pillars)
interconnecting electronic and photonic chips. This extra capacitance ranging from 20 fF to 100 fF
degrades transmitter’s energy e�ciency and also imposes stringent gain-bandwidth constraint for
the receiver design leading to degraded receiver sensitivity.

Aside from the packaging of photonics with mixed-signal transceiver circuits, the final
packaging with the SoC chip (e.g., CPU, FPGA or switch) is important for the overall photonic
interconnect performance since it determines the quality of the electrical link between the SoC
and the photonic transceiver. Current non-monolithic platforms require wire-bonds to connect
the photonic transceivers to the package, which degrades the electrical link channel between

Why is 45nm SOI special? 

[Stojanovic, Opt. Ex 2018]
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2. Survey of existing SOI platforms

In this section, we summarize the performance of the state-of-the-art silicon photonic process
technology platforms and discuss the advantages of monolithic integration in advanced high-
performance CMOS processes for meeting the needs of future optical interconnects.

High-performance integrated systems demand advanced CMOS technologies with high fT
(frequency at which transistor current gain is unity) and fmax (frequency at which transistor
power gain is unity). These are the performance metrics of transistors representing analog
circuit’s speed and sensitivity, and logic speed. Fig. 1 shows the trend of fT for NMOS devices in
IBM/GlobalFoundries technology nodes, which is representative of the performance in other
similar foundries and process nodes. Notice that fT has peaked in 45 nm and 32 nm CMOS nodes,
due to the focus of more scaled-down nodes on logic energy and area density optimization for
memory and logic chips, rather than the speed of analog and mixed-signal circuits. Since photonic
interconnects are primarily based on mixed-signal transceiver circuitry, these transistor metrics
directly impact the link performance metrics such as speed, sensitivity and energy e�ciency. For
photonic interconnects to be attractive alternative to electrical short-to-long-range (chip-to-chip
to backplane) I/O of large SoC chips, they have to provide a sub-1 pJ/b 25-50 Gb/s links with
low-energy electrical connection to the SoC and aggregate throughputs larger than 10 Tb/s.

Fig. 1. The comparison of fT for IBM/GlobalFoundries CMOS processes.

From this perspective, non-monolithic platforms are expected to achieve high energy e�ciencies
and receiver sensitives for high-speed optical transceivers due to the flexibility to choose the best
performing electronics process independent of the photonics process. Performance summary of the
latest non-monolithic silicon photonic technologies are shown in Table. 1. Despite the advantage
of optimizing the electronics and photonics separately, these platforms are still consuming
>1 pJ/b modulator driver energies with >50 µA receiver sensitivity, which clearly does not satisfy
the electrical and optical power budget of future optical interconnects. The main reason are the
additional parasitic inductance and capacitance of wire-bonds or micro-bumps (like Cu-pillars)
interconnecting electronic and photonic chips. This extra capacitance ranging from 20 fF to 100 fF
degrades transmitter’s energy e�ciency and also imposes stringent gain-bandwidth constraint for
the receiver design leading to degraded receiver sensitivity.

Aside from the packaging of photonics with mixed-signal transceiver circuits, the final
packaging with the SoC chip (e.g., CPU, FPGA or switch) is important for the overall photonic
interconnect performance since it determines the quality of the electrical link between the SoC
and the photonic transceiver. Current non-monolithic platforms require wire-bonds to connect
the photonic transceivers to the package, which degrades the electrical link channel between

Why is 45nm SOI special? 

[Stojanovic, Opt. Ex 2018]
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2. Survey of existing SOI platforms

In this section, we summarize the performance of the state-of-the-art silicon photonic process
technology platforms and discuss the advantages of monolithic integration in advanced high-
performance CMOS processes for meeting the needs of future optical interconnects.

High-performance integrated systems demand advanced CMOS technologies with high fT
(frequency at which transistor current gain is unity) and fmax (frequency at which transistor
power gain is unity). These are the performance metrics of transistors representing analog
circuit’s speed and sensitivity, and logic speed. Fig. 1 shows the trend of fT for NMOS devices in
IBM/GlobalFoundries technology nodes, which is representative of the performance in other
similar foundries and process nodes. Notice that fT has peaked in 45 nm and 32 nm CMOS nodes,
due to the focus of more scaled-down nodes on logic energy and area density optimization for
memory and logic chips, rather than the speed of analog and mixed-signal circuits. Since photonic
interconnects are primarily based on mixed-signal transceiver circuitry, these transistor metrics
directly impact the link performance metrics such as speed, sensitivity and energy e�ciency. For
photonic interconnects to be attractive alternative to electrical short-to-long-range (chip-to-chip
to backplane) I/O of large SoC chips, they have to provide a sub-1 pJ/b 25-50 Gb/s links with
low-energy electrical connection to the SoC and aggregate throughputs larger than 10 Tb/s.

Fig. 1. The comparison of fT for IBM/GlobalFoundries CMOS processes.

From this perspective, non-monolithic platforms are expected to achieve high energy e�ciencies
and receiver sensitives for high-speed optical transceivers due to the flexibility to choose the best
performing electronics process independent of the photonics process. Performance summary of the
latest non-monolithic silicon photonic technologies are shown in Table. 1. Despite the advantage
of optimizing the electronics and photonics separately, these platforms are still consuming
>1 pJ/b modulator driver energies with >50 µA receiver sensitivity, which clearly does not satisfy
the electrical and optical power budget of future optical interconnects. The main reason are the
additional parasitic inductance and capacitance of wire-bonds or micro-bumps (like Cu-pillars)
interconnecting electronic and photonic chips. This extra capacitance ranging from 20 fF to 100 fF
degrades transmitter’s energy e�ciency and also imposes stringent gain-bandwidth constraint for
the receiver design leading to degraded receiver sensitivity.

Aside from the packaging of photonics with mixed-signal transceiver circuits, the final
packaging with the SoC chip (e.g., CPU, FPGA or switch) is important for the overall photonic
interconnect performance since it determines the quality of the electrical link between the SoC
and the photonic transceiver. Current non-monolithic platforms require wire-bonds to connect
the photonic transceivers to the package, which degrades the electrical link channel between

Why is 45nm SOI special? 

[Stojanovic, Opt. Ex 2018]

• Transistor	performance	comparable	or	
exceeding	leading-edge	nodes

• 193nm	immersion	lithography
• Most	advanced	node	before	any	
double	patterning	needed	or	EUV

• One	of	the	last	SOI	nodes	that	support	
an	optical	mode	natively	in	its	c-Si	
transistor	layer

• SiGe present	for	transistor	strain	
engineering

• An	SOI	CMOS	node,	qualified	billion	
transistor	designs
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Single-chip microprocessor with photonic I/O

• Single chip with both electronics and 
optics
• 70M transistors alongside ~1,000 

optical devices
• First microprocessor chip to 

communicate using light

[Sun	et	al	Nature	2015]
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Single-chip microprocessor with photonic I/O

• Dual-core RISC-V processors
• 1MB on-chip SRAM
• Two modes: 
• CPU mode
• emulated DRAM mode

• Runs arbitrary compiled code
• Linux
• Graphics rendering
• Performance benchmark tools

[Sun	et	al	Nature	2015]

CPU	mode “DRAM”	mode

Single mode fiber

Read	data	from	memory

Commands	+	Write	data
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WaveLight: Low-latency switching fabric

[Sun	et	al. HOTI	2017]
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WaveLight: Low-latency switching fabric

PLLs	and	
clock	spine

Optical	
receive	
macro

Optical	
transmit	
macroIndependent	

experiments	
region

Fiber	
grating	
coupler	
array

Wavelight
Fabric	
Engine

4λ x	8 Gb/s

[Sun	et	al. HOTI	2017]
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Monolithically integrated PICs for multi-Tbps I/O
• Includes	all	electronics	and	photonics	for	
optical	I/O	(except	laser)

• Transmitter:	2.0	Tbps (5	x	400Gbps)
• 16	x	25Gbps
• Digital	backend
• SerDes
• High-speed	clocking,	distribution
• Closed-loop	thermal	control
• Built-in	self	test	(BERT,	debug,	etc.)

• Receiver:	1.2	Tbps (3	x	400Gbps)
• 16	x	25Gbps
• Digital	backend
• SerDes
• PD,	TIA,	equalization,	CDR,	clocking



Copyright Ayar Labs, Inc.Slide 37 |  11/7/18

• 400G	Tx
• ~1	Tbps/mm2

• 0.83	pJ/bit
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• Device simulations for compact model 
parameter extraction

• Lumerical FDTD, Mode, Device

• COMSOL

• Verilog-A device compact models to integrate 
into electronic-photonic circuit simulations

• Fully-dynamic models, not just base-band 
models

• Simulation done using established circuit 
simulation tools

• Spectre/HSPICE 

• Run in the same simulation as with 45nm 
transistors

Co-design simulation environment

56Gbps PAM4
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Parasitic extraction

• Connections between circuits and 
photonic devices using existing 
PDK metal layers

• Parasitic extraction deck will 
extract full signal path between 
circuits and optics

• Short wire lengths, parasitics are 
on the order of 1-2fF

• Extracted netlist plugs directly into 
simulation framework 
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• Introduction and motivation
• Photonics in SOI CMOS
• Photonics in Bulk CMOS
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[ISCA 2010]

High Performance 45nm SOI 0.180µm Bulk

70M transistors
1000 optical devices

DARPA POEM
2M transistors

1000s optical devices

6m
m

5m
m

Photonic processor to memory interconnect
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Array

Periphery

DDR3-1333	Technology
2	Gb die	cost	~90¢

8 mm
8
m
m

DRAM	processes	heavily	optimized	for	cost

Key	constraints:

Ø Bulk	Substrate

Ø Low	Cost

Ø No	SiGeMeade et al. OI 13, VLSI Tech Symp 14

Micron wafers
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DTI adjacent to STI

[Meade et al. VLSI Tech Symp 14, Sun et al VLSI Ckts Symp 14]

Micron	D1L	Reticle

180nm
Bulk	chip

First-ever	link	result	with	bulk	CMOS	photonics
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• All slices BER checked at 5Gb/s
• 45Gb/s aggregate rate per waveguide
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• All receive slices functional and BER checked at 
5Gb/s
• Single fiber more I/O BW than x16 DDR4 part
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First	65nm	bulk	CMOS	wafers	with	working	photonics	and	transistors!

From 200mm to 300mm bulk CMOS

[Atabaki et	al. Nature	2018]
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• Deposited on deep-trench oxide
• Patterned after transistor formation[Atabaki et	al. Nature	2018]

Process Integration
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[Atabaki et	al. Nature	2018]

Device Library
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[Atabaki et	al. Nature	2018]

Microring modulators
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[Atabaki et	al. Nature	2018]

Microring detectors
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10Gbps	Tx and	Rx	Macro	Operation

[Atabaki et	al. Nature	2018]

Link operation
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Conclusions
• Photonics	has	entered	standard	CMOS	processes
• An	emerging	ecosystem	will	drive	new	applications
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200mm CMOS 200nm Bulk Process 300mm CMOS 65nm Bulk Process

Building optics in bulk CMOS
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Published this week in Nature: 65nm Bulk CMOS Integration


