# More then Moore with Electronic-Photonic Integration

Vladimir Stojanović Berkeley Wireless Research Center UC Berkeley

- Milos Popović, Rajeev Ram, Krste Asanović, Michael Watts
- Jason Orcutt, Jeffrey Shainline, Christopher Batten, Ajay Joshi, Anatoly Khilo, Amir Atabaki, Fabio Pavanello, Luca Alloatti, Hanqing Li
- Mark Wade, Karan Mehta, Jie Sun, Josh Wang
- Chen Sun, Sen Lin, Sajjad Moazeni, Nandish Mehta, Michael Georgas, Benjamin Moss, Jonathan Leu, Christos Adamopoulos, Panagiotis Zarkos, Pavan Bhargava, Taehwan Kim
- Yong-Jin Kwon, Scott Beamer, Yunsup Lee, Andrew Waterman, Miquel Planas, Rimas Avizienis, Henry Cook, Huy Vo
- Roy Meade, Gurtej Sandhu and Micron Fab12 team (Zvi, Ofer, Daniel, Efi, Elad, ...)
- Douglas Coolbaugh, Christopher Baiocco and the CNSE fab team
- DARPA, Micron, NSF, BWRC
- IBM Trusted Foundry, Global Foundries



# Changing role of electronics



#### More-than-Moore perspective

#### 2012

# Enhanced CMOS enables new applications

World's first siPhotonic transmitter in 45nm SOI Stojanovic, Popovic, Ram

World's first 60GHz CMOS Amplifier Niknejad & Brodersen

1997 One of the first CMOS radios Rudell & Gray

|                                               | Lo2<br>Phase<br>Shifter |
|-----------------------------------------------|-------------------------|
| Shifter o<br>R Filte<br>L <sup>MA</sup> Mixer | K Filter ADC            |
| DC Offs                                       |                         |
|                                               | Inductors in            |
|                                               | process                 |

Inductors in IC process Nguyen & Meyer 1990









#### What is happening in Semiconductor Industry? – Part I



Every major foundry has a Silicon-Photonic process

#### What is happening in Semiconductor Industry? – Part II



#### **Our Process Platforms**





Fully-Customized SOI Photonics (CNSE) + any CMOS (currently 65nm bulk)

#### Deposited Photonics 180nm (Micron) and 65nm (CNSE) **bulk CMOS**



#### Photonics next to the fastest transistors



•  $f_T/f_{max}$  have not improved since 32nm node

- f<sub>T</sub>/f<sub>max</sub> affect speed, energy-efficiency, ... of electronic-photonic systems
- 32/45nm: Fastest Transistors + Thick-enough Si bodies to guide the light
  - Si body in SOI nodes below 32nm (FDSOI) cannot guide the light!

# IBM/GF 12SOI (45nm) CMOS



- 300mm wafer, commercial process
- MOSIS and TAPO MPW access
- Advanced process used in microprocessors
- Photonic enhancement enables VLSI photonic systems (no required process changes)

#### IBM Cell



#### **IBM Espresso**





# **IBM Power 7**



# "Zero-Change" Optics in 45nm



- Photonics for free! (No modification to the process)
- Closest proximity of electronics and photonics
- Single substrate removal post-processing step

Monolithic photonics platform with the fastest transistors

#### World's first processor to communicate with light

var Labs

# Silicon-Photonic components integrated directly in the chipZero-changeDARPA POEM & PERFECT – Stojanović, Ram, Popović, Asanović45nm SOI70+M transistors, thousands of photonic devices



#### Si Waveguides

**B**WRC

Ш





#### **Vertical couplers**

# Waveguide Diffraction Grating



# Waveguide Taper

#### [Wade OIC 2015]



[Orcutt 2013, Alloatti APL 2015]

#### **Key Device Components**

**B**WRC



Integrated Heater Output Waveguide Input Waveguide [Shainline OL 2013, Wade OFC 2014]

# **Resonant-Rings**



#### Interleaved planar PN junctions

- Enabled by advanced lithography of this process
- Highly sensitive structures that can be used in a number of applications
  - Q factors up to 200k



#### Higher-speed and higher-order modulation



**B**WRC



#### FMCW LIDAR – System Architecture



# Photonic array distortions



- Extensive modeling framework
  - Various phase-shifter types (AM/PM distortion)
  - Quantization
  - Index variations, coupling and pitch mismatch, etc



#### Laser chirp control via optical PLL

• Optical PLL enables closed-loop control of laser wavelength



All-digital implementation enables the loop to address multiple different chirp rates & optimize phase noise through loop filter reconfiguration

• Chips currently in packaging

- CMOS: GF 45nm SOI process
- Photonics: CNSE 300mm process

## **Coherence distance barrier**



- Spectral peak degrades as distance increases ( $\propto e^{-\Delta\omega\tau}$ )
  - Beyond "coherence distance," lineshape converges to laser lineshape (e.g. Lorentzian)
  - Big challenge for using compact semiconductor lasers (>1MHz linewidth) for long-distance (>100m) LIDAR

#### Beyond the coherence limit with optimized detection

#### [Kim et al ICASSP18, CLEO18]



Improved detection algorithm

- Take into account the phase-noise basis shape
  - Wide-range tunable laser with DBR mirror used ( $\Delta v^{\sim}1MHz$ )
  - Path delay (110m) emulated by long fiber, path loss emulated by VOA
  - Simulated path loss ~ -80dB (corresponding to 110m target, 3x3mm aperture)

#### **Future MIMO System Challenges**

- mm-wave operating frequency
- 100's of beams, 1000's of antennas
- Power
- Density
- Chip-to-chip communication

#### **Electronic-Photonic System Goals**

- mm-wave LO distribution
- Direct mm-wave photonic link from antenna to remote hub

#### NF and SNDR relaxed in massive MIMO systems



## Cellular and Molecular Sensing



#### **Coherent detection**



- Reduced measurement time (sub 1s)
  - Capture faster kinetics
- Increased SNR (allows lower ring Q factors)
- Integrated thermal tracking

[Anwar, Stojanovic, Niknejad]

# Packaging and functionalization



Dry Streptavidin

Post Wash

fluorophore

fluorophore





APTES Chip





- Substrate released chip (45nm SOI)
  - Successful functionalization with APTES/biotin and biotin-streptavidin binding

#### First sensitivity and kinetics results



**B**WRC

#### Ring resonator based Ultrasound Imaging





• Ultrasound RX phased array

- Real-time 3D ultrasound imaging
- Reduced cable count and pitch compared to piezo/cmut alternatives
  - more aggressive scaling of ultrasound probes targeting IVUS, TEE
- Resonant shift induced by
  - Acoustic pressure wave straining the waveguide and causing  $\Delta n_{eff}$
  - Acoustic resonance vibration



#### **Preliminary Results**



#### Electronic-Photonic Quantum SoCs



[Gentry et al, Optica'15, CLEO'18]

**BWRC** 

[Popovic, Stojanovic, Kumar]

# Deposited polySi photonic platform



- Deposited on deep-trench oxide
- The only way to integrate photonics in advanced nodes.

#### Already in a 300mm fab

# First 65nm bulk CMOS wafers with working photonics and transistors!



**B**WRC



A. Atabaki, S. Moazeni et al. Nature, April 2018

- Silicon-photonics enabler of new capabilities
  - Think "new on-chip inductor" or "new on-chip t-line"
- Potentially revolutionize many applications despite slowdown in CMOS scaling
- Deposited polySi-photonics key to monolithic integration with advanced transistors